
Extracting Parallelism is key to performance.

Key goal of hardware, systems, and for more than
a decade. The only way to get performance.

Old Slides from ~2017.
But these are main ideas, we’ll see them at

multiple scales.

Biased by my own work because I have slides and
am lazy… not because I think it’s best.

3

Statistical algorithms have
relaxed notions of correctness
leads to new opportunities for:
• Algorithms,
• Systems, and
• Hardware.

Message

The Key Balance

4

Key Issue: Balance
Statistical versus Hardware Efficiency.

Ce Zhang, CR DimmWitted: A Study of Main-Memory Statistical Analytics. VLDB14.

• Statistical efficiency how many steps you take

• Hardware efficiency how efficiently you take each of those steps

Three driving trends in hardware

(1) Lots of smaller cores,
(2) Non-Uniform Memory (NUMA), and
(3) Single-Instruction Multiple Data
(SIMD) (and SIMT)

Approximation allows major performance
improvements.

Trend 1: Many different Cores

Steve
Wright

Ben
Recht

Feng
Niu

Single Cores are not getting faster.

Chips now contain many cores, so throughput
is increasing… but need to rewrite algos!

Speed

Statistical Analytics Crash Course

8

min x f (x, yi)
i=1

N

∑
Staggering amount of
machine learning/stats

can be written as:
N (number of yis, data) typically in the billions

Ex: Classification, Recommendation, Deep Learning.

xk+1 = xk −αN∇f (xk, yj)

De facto iteration to solve
large-scale problems: SGD.

Select one term,
j, and estimate

gradient.
Billions of tiny iterations.

Multicore: Independent Case

9

Jobs with little communication, 2
cores executes twice as faster!

Job 1

Job 2

Job 3

Job 4

Multicore: Dependent Case

10

Protocol for “whose turn,” called
locking, takes 100 cycles.

Job 1

Job 2

Job 3

Job 4

Is it my
turn?

Communication scales quadratically

Suppose it takes 1 second to communicate
with 2 cores.

4 cores takes 4 second

Server may have
100+ cores

8 cores takes
16 seconds.

k cores takes
(k/2)2 seconds.

The key algorithm in machine learning

SGD consists of
BILLIONS of tiny jobs!

The core algorithm of modern learning
called is Stochastic Gradient Descent (SGD)

Implemented in a classical way (locking)
SGD actually gets slower with more cores

So what can we do?

Multicore: Hogwild! Case

13

Ignore the locks!

Job 1

Job 2

Job 3

Job 4

Is it my
turn? Yes!

How do we run SGD in Parallel?

Theorem (roughly, NIPS11): If we do no
locking, SGD converges to correct
answer—at essentially the same rate!

Just ignore the locking protocol…
As we say, go Hogwild!

This is computer science heresy!

Hogwild! [Niu, Recht, Ré, Wright NIPS11]
AsySCD [Liu, Wright et al. ICML14, JMLR14]
Buckwild! [De Sa, Olukotun, Ré NIPS15]

Cortana: Microsoft’s Digital Assistant

http://www.wired.com/2014/07/microsoft-adam/

“…using a technology
called, of all things,

Hogwild!”

http://www.geekwire.com/2014/artificial-intelligence-breakthrough-microsofts-project-adam-identifies-dog-breeds/

All web companies have
similar: image rec, voice,
mobile, search, etc.

A larger trend?

16

Relaxing consistency to be
architecturally aware can be a

big performance win.

16

Asynchrony in Deep Learning

A regularizer is a (sane) statistical penalty…
Bugs in your implementation are not helpful

Trend 2: NUMA
Non-Uniform Memory Access

Steve
Wright

Ji
Liu

Ce
Zhang

Krishna
Sridhar

A view inside a box… (more later

19
Modern version: Thousands of cores with close by memory

(Called high-bandwidth memory, called HBM)

One Example: Quadratic Programming with Orthant
Constraints (on cpu, same tradeoffs)

20

0

5

10

15

20

25

1 6 11 16 21 26 31 36

of Threads

Speed
up

Spinlock

Parallel
Sum

One Example.

21

0

5

10

15

20

25

1 6 11 16 21 26 31 36

of Threads

Speed
up

Spinlock
Hogwild!

Parallel
Sum

thrashing across sockets.

What about multiple sockets?

22

0

5

10

15

20

25

1 6 11 16 21 26 31 36

of Threads

Speed
up

Spinlock
Hogwild!

Parallel
Sum

Dimm
Witted

Model Replication

23

Core 1

Core 2

Node 1

Core 3

Core 4

Node 2

ModelJust
Data

Cache coherence Stalls!

RAMRAM

PerMachine (Hogwild!)

PerCore

Core 1

Core 2

Node 1

Core 3

Core 4

Node 2 RAMRAM
Model

Model

Model

Model

Infrequent Communication

Model Replication

24

PerNode

Core 1

Core 2

Node 1

Core 3

Core 4

Node 2 RAMRAM

Model Model

Infrequent communication

Hogwild!

PerCore

In between
both Hogwild!
and PerCore?

High Low

Low High

Statistical versus Hardware Efficiency

25DimmWitted: A Study of Main-Memory Statistical Analytics. VLDB14.

Relaxing consistency
results in new tradeoffs.

Can be 100x faster than classical choices

1.Access methods
• {Row, Column, Row-col}

2.Model Replication
• {Core, Node, Machine}

3.Data Replication
• {Full, Importance, Shard}

Trend 3: Single Instruction
Multiple Data (SIMD)

Modern processors offer fine-grained parallelism. [NIPS15]

Chris
De Sa

Kunle
Olukotun

SIMD Processing: Fine-grained parallelism

Single instruction multiple data (SIMD)

R1

R2

R1 + R2 =

R1

R2

R1 + R2 =

SIMD Addition (4 way)Standard Addition (Two registers)

Same operation on
multiple data points in parallel

SIMD: Doubling again!

SIMD bandwidth has
doubled each of the
last four generations.

Image courtesy of Intel Corporation

Good old days of Moore’s Law! …
If we can take advantage of fine-grained parallelism

Precision vs. Parallelism

SIMD Precision SIMD Parallelism

30

A hardware model for precision
[ISCA17]

Chris
De Sa

Kunle
Olukotun

Four Classes of Numbers

¤Dataset numbers
¤ used to store the immutable input data

¤Model numbers
¤ used to represent the vector we are updating

¤Gradient numbers
¤ used as intermediates in gradient computations

¤Communication numbers
¤ used to communicate among parallel workers

Quantize classes independently

¤ Using low-precision for different number classes has different
effects on performance.
¤ e.g. quantizing the gradient numbers improves compute throughput,

but has little effect on memory

¤ Existing work often quantizes some classes, but doesn’t
consider the others.

The DMGC Model

¤ Idea: associate each implementation with a DMGC
signature that displays its precision for all four number classes
¤ Lets us classify previous work and future systems

D8M16G32fC16

The algorithm
uses 8-bit

numbers to store
the dataset.

It uses 16-bit
numbers for
the model.

It computes
gradients as
32-bit floats.

It communicates
among workers

with 16-bit
numbers.

Be warned:
Your learning parameters depend on the

hardware and those numbers.
(e.g. momentum and delay are connected)

Ioannis Mitliagkas Jian Zhang

What shook my belief in progress through optimization…

• Turns out Optimization is a leaky abstraction for deep learning.
• There are approaches that cause the loss to go down more slowly (worse optimization) but generalizing

better (better test performance).

• Happy to give examples if you ask, so many out there it’s bizarre….

• This is so much more interesting than it should be!

