Extracting Parallelism is key to performance.

Key goal of hardware, systems, and for more than a decade. The only way to get performance.

Old Slides from ~2017. But these are main ideas, we'll see them at multiple scales.

Biased by my own work because I have slides and am lazy... not because I think it's best.

Message

Statistical algorithms have **relaxed** notions of correctness leads to **new opportunities** for:

- Algorithms,
- Systems, and
- Hardware.

Key Issue: Balance <u>Statistical</u> versus <u>Hardware</u> Efficiency.

- Statistical efficiency how many steps you take
- Hardware efficiency how efficiently you take each of those steps

Ce Zhang, CR DimmWitted: A Study of Main-Memory Statistical Analytics. VLDB14.

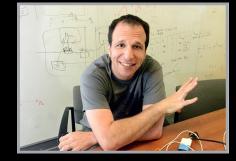
Three driving trends in hardware

(1) Lots of smaller cores,
(2) Non-Uniform Memory (NUMA), and
(3) Single-Instruction Multiple Data
(SIMD) (and SIMT)

Approximation allows major performance improvements.

Trend 1: Many different Cores

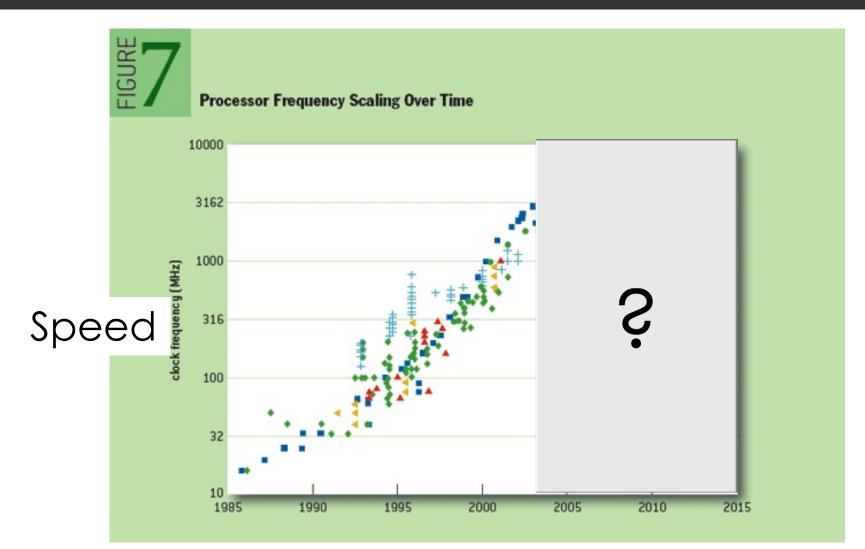
Steve Wright



Ben Recht

Feng Niu

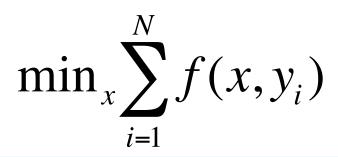
Single Cores are not getting faster.



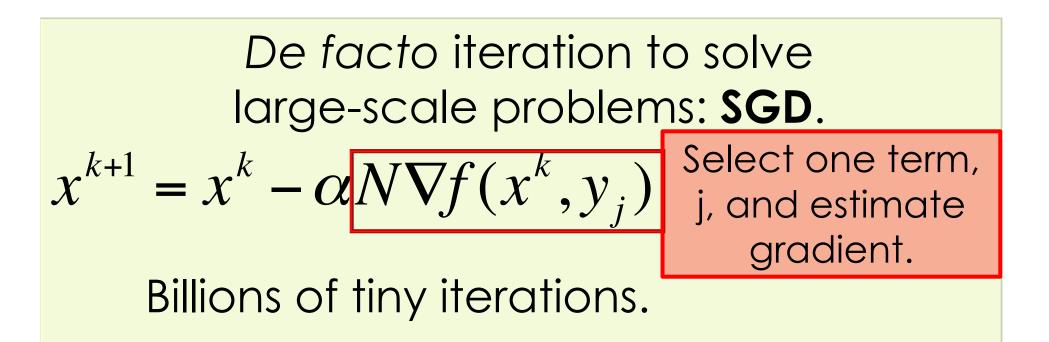
Chips now contain many cores, so throughput is increasing... but need to rewrite algos!

Statistical Analytics Crash Course

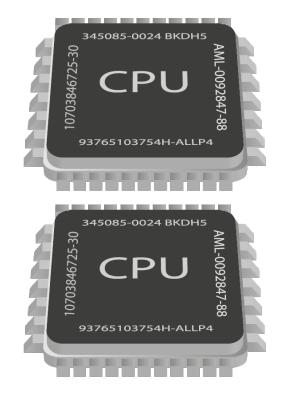
Staggering amount of machine learning/stats can be written as:



N (number of y_is, data) typically in the billions Ex: Classification, Recommendation, Deep Learning.



Multicore: Independent Case



Jobs with little communication, 2 cores executes twice as faster!

Multicore: Dependent Case

Protocol for "whose turn," called **locking**, takes 100 cycles.

345085-0024 BKDH5

CPU

93765103754H-ALLP4

345085-0024 BKDH5

CPU

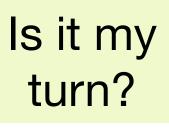
93765103754H-ALLP4

ML-0092847

0092847

0703846725-30

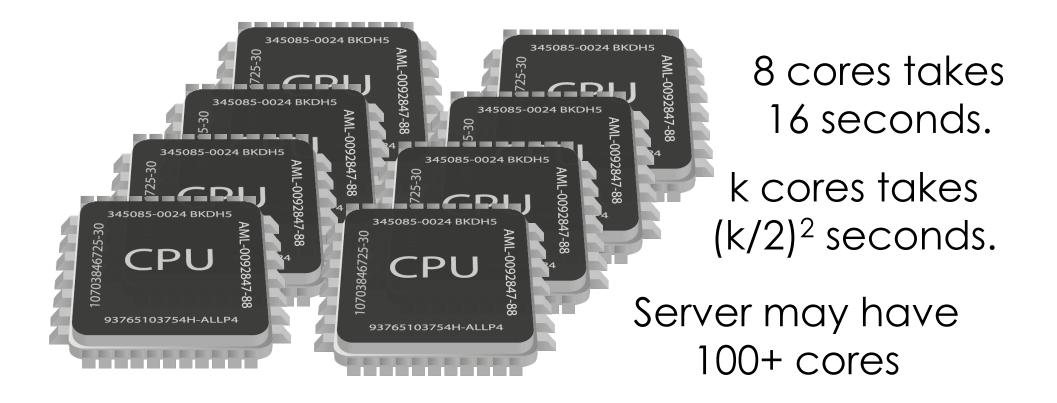
0703846725-30



Communication scales quadratically

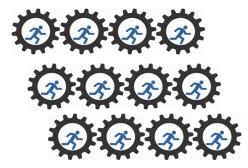
Suppose it takes 1 second to communicate with 2 cores.

4 cores takes 4 second



The key algorithm in machine learning

The core algorithm of modern learning called is **Stochastic Gradient Descent (SGD)**



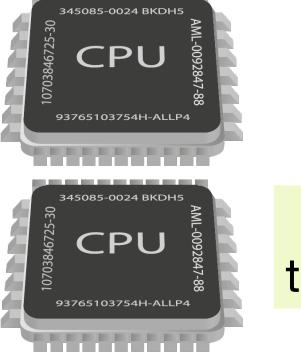
SGD consists of **BILLIONS** of tiny jobs!

Implemented in a classical way (locking) SGD actually gets *slower* with more cores

So what can we do?

Multicore: Hogwild! Case

Job 4



Is it my turn? Yes!

Ignore the locks!

How do we run SGD in Parallel?

Just ignore the locking protocol... As we say, go **Hogwild**!

This is computer science heresy!

Theorem (roughly, NIPS11): If we do **no locking**, SGD converges to correct answer—at essentially the same rate!

Hogwild! [Niu, Recht, Ré, Wright NIPS11] AsySCD [Liu, Wright et al. ICML14, JMLR14] Buckwild! [De Sa, Olukotun, Ré NIPS15]

Cortana: Microsoft's Digital Assistant WIRED

AI breakthrough: Microsoft's 'Project Adam' identifies dog breeds, points to future of machine learning

All web companies have similar: image rec, voice, mobile, search, etc.

"...using a technology called, of all things, **Hogwild!"**

http://www.wired.com/2014/07/microsoft-adam/ http://www.geekwire.com/2014/artificial-intelligence-breakthrough-microsofts-project-adam-identifies-dog-breeds/

A larger trend?

Relaxing **consistency** to be **architecturally aware** can be a big performance win.

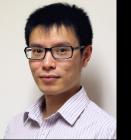
Asynchrony in Deep Learning

Heard at **#icml2016**: "SGD is so robust that your bugs in your SGD implementation will work as regularizers."

A regularizer is a (sane) statistical penalty... Bugs in your implementation are not helpful

Trend 2: NUMA Non-Uniform Memory Access

Steve Wright

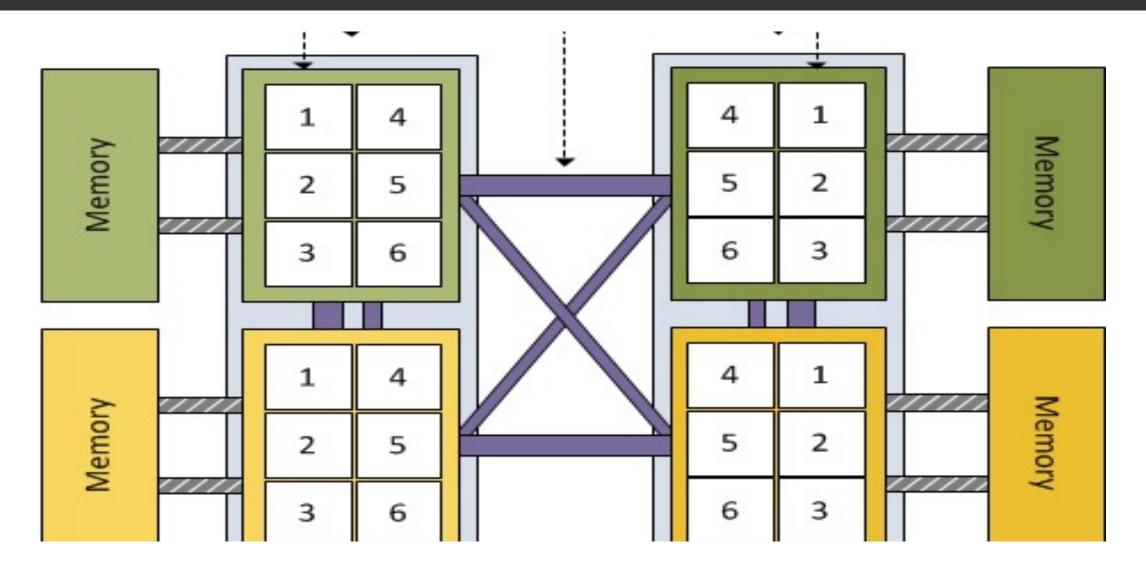


Ji Liu Z

Ce Zhang

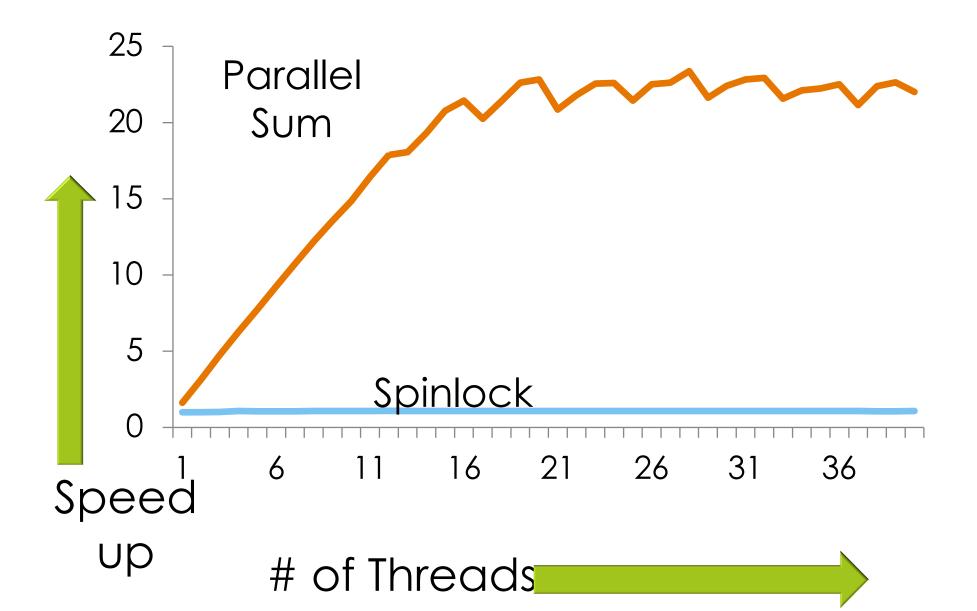
Krishna Sridhar

A view inside a box... (more later

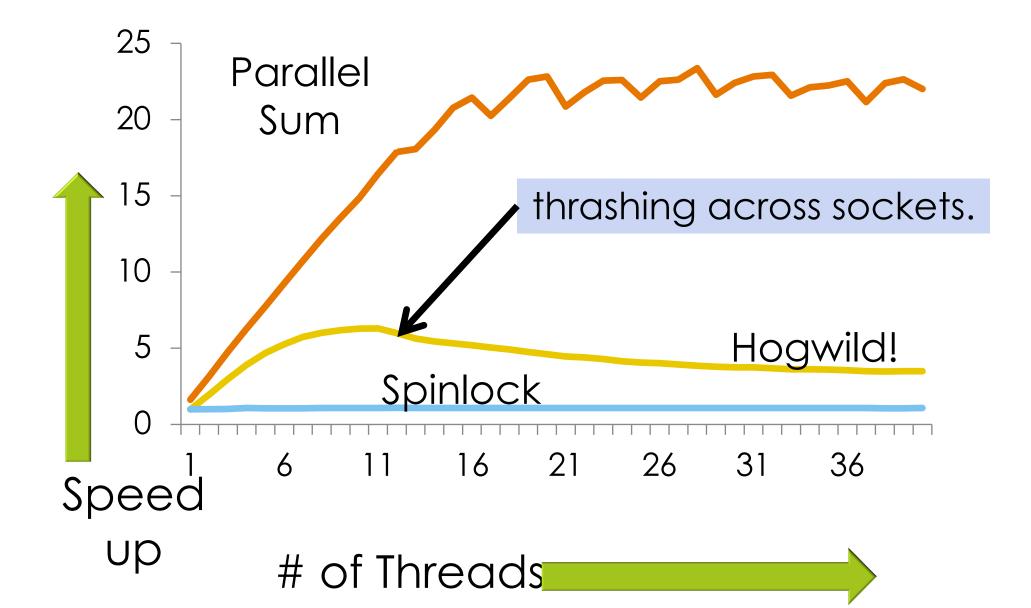


Modern version: Thousands of cores with close by memory (Called high-bandwidth memory, called HBM)

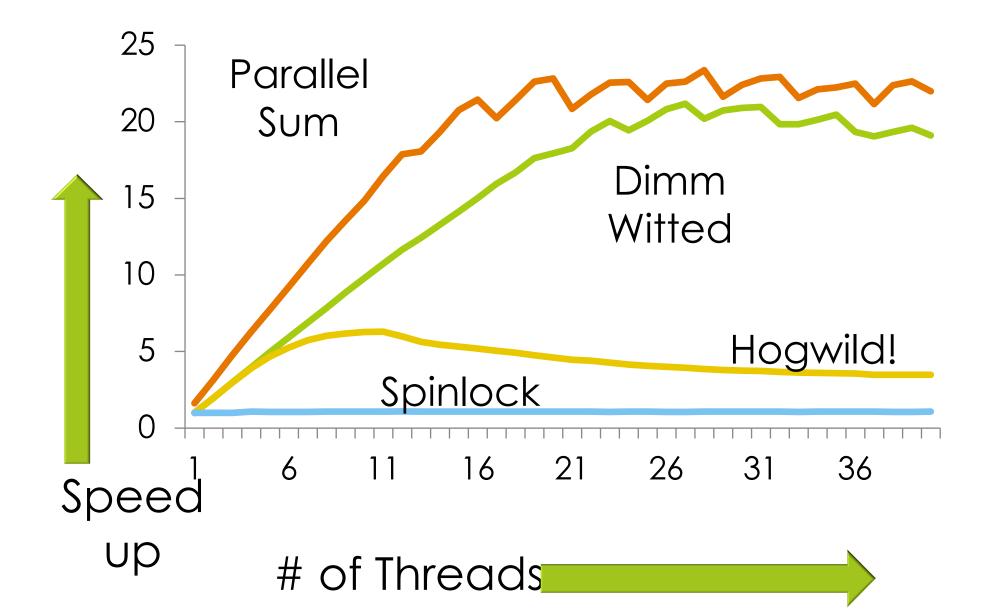
One Example: Quadratic Programming with Orthant Constraints (on cpu, same tradeoffs)



One Example.

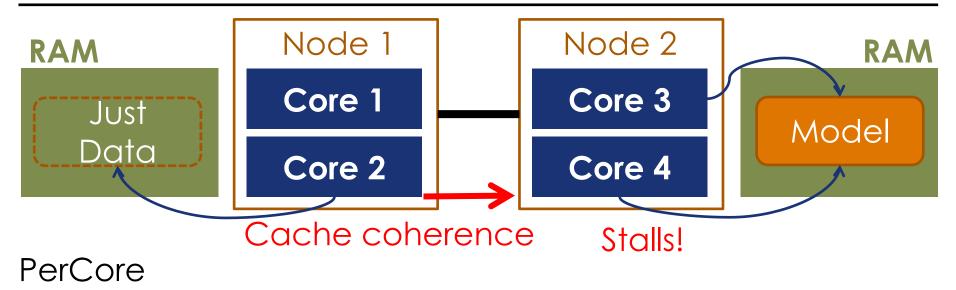


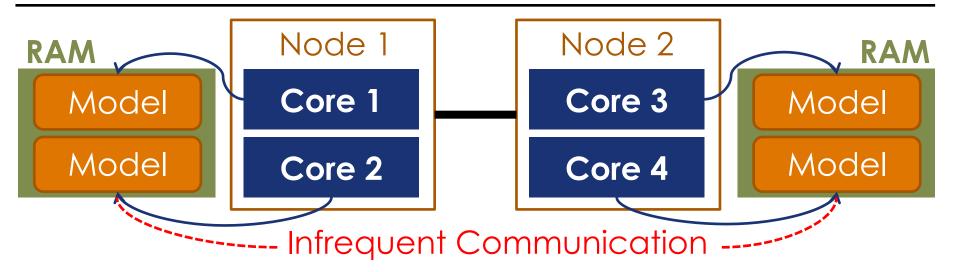
What about multiple sockets?



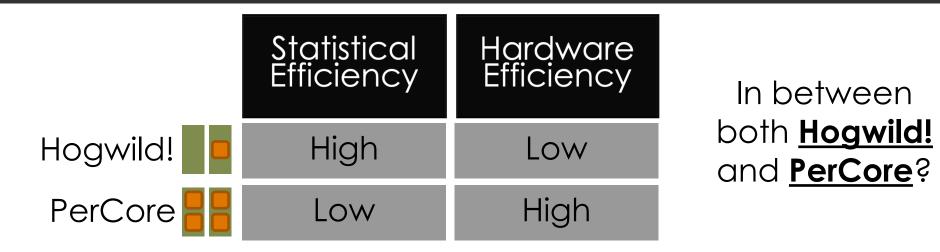
Model Replication

PerMachine (Hogwild!)

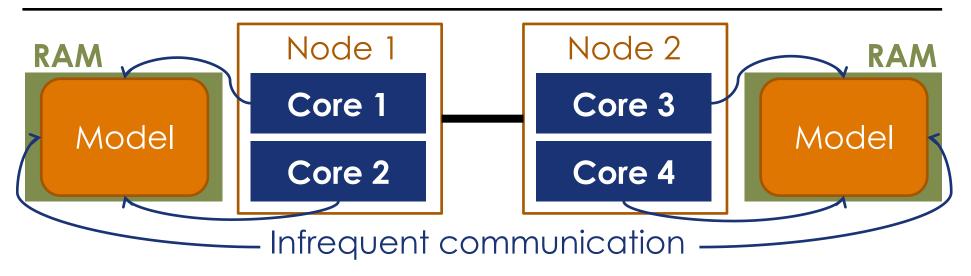




Model Replication



PerNode



Statistical versus Hardware Efficiency

Relaxing consistency results in new tradeoffs.

1. Access methods

- {Row, Column, Row-col} 2. Model Replication
 - {Core, Node, Machine}
- 3. Data Replication
 - {Full, Importance, Shard}

Can be 100x faster than classical choices

DimmWitted: A Study of Main-Memory Statistical Analytics. VLDB14.

Trend 3: Single Instruction Multiple Data (SIMD)

Chris De Sa Kunle Olukotun

Modern processors offer fine-grained parallelism. [NIPS15]

SIMD Processing: Fine-grained parallelism

Single instruction multiple data (SIMD)

Same operation on *multiple data points* in parallel

SIMD: Doubling again!

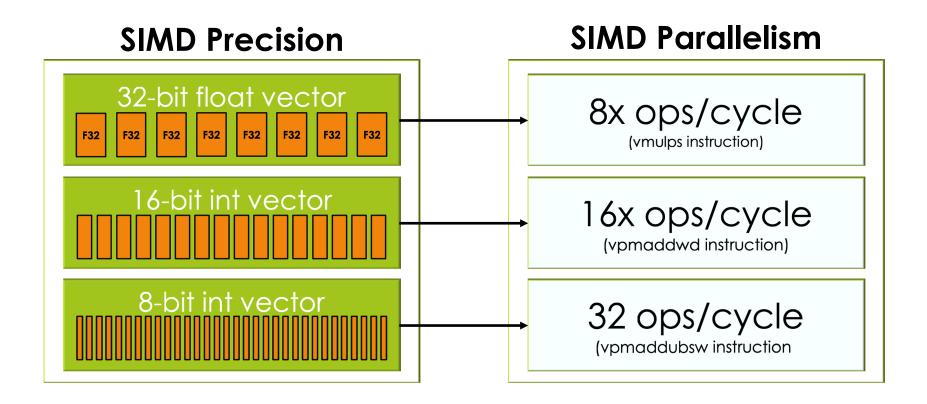
Intel® Advanced Vector Extensions

VX-512: 512-bit vectors 8X peak FLOPs over 4 generations 32 registers, Masking Knights Landing /Future Xeon AVX2: FMA (2x peak flops) er SIMD. "Gather" Instructions Haswell (22 nm Tock) Ivybridge (22nm Tick) AVX: 2X flops: 256-bit wide floating-point vectors Sandy Bridge Since 2001: (32 nm Tock) 128-bit Vectors Image courtesy of Intel Corporation 2012 2010 2011 2013

Good old days of Moore's Law! ... If we can take advantage of fine-grained parallelism

SIMD bandwidth has **doubled each** of the last four generations.

Precision vs. Parallelism



Tradeoff between precision & parallelism

A hardware model for precision [ISCA17]

Chris De Sa Kunle Olukotun

Four Classes of Numbers

Dataset numbers

used to store the immutable input data

Model numbers

used to represent the vector we are updating

Gradient numbers

used as intermediates in gradient computations

Communication numbers

used to communicate among parallel workers

Quantize classes independently

- Using low-precision for different number classes has different effects on performance.
 - e.g. quantizing the gradient numbers improves compute throughput, but has little effect on memory

Existing work often quantizes some classes, but doesn't consider the others.

The DMGC Model

Idea: associate each implementation with a DMGC signature that displays its precision for all four number classes
 Lets us classify previous work and future systems

 $D^8 M^{16} G^{32f} C^{16}$ It communicates The algorithm It uses 16-bit It computes among workers uses 8-bit numbers for gradients as with 16-bit numbers to store the model. 32-bit floats. numbers. the dataset.

Be warned: Your learning **parameters** depend on the hardware and those numbers. (e.g. momentum and delay are connected)

Ioannis Mitliagkas

Jian Zhang

What shook my belief in progress through optimization...

- Turns out Optimization is a **leaky** abstraction for deep learning.
 - There are approaches that cause the loss to go down more slowly (worse optimization) but generalizing better (better test performance).
- Happy to give examples if you ask, so many out there it's bizarre....
- This is so much more interesting than it should be!