
Project 2: Building Large Language Models

CS324 (Winter 2022)

Language models are trained on raw text and therefore lack certain properties (e.g., controllability, ability
to perform certain tasks, generalizability to various domains). In this project, you will take an existing
language model (GPT-2) and try to instill certain properties by continued pre-training on a custom dataset.

1. In part 1, you will try to instill GPT-2 with length controllability, the ability to generate a sentence of a
certain length.

2. In part 2, you will try to instill GPT-2 with the focal property that you proposed in Project 1.

In both cases, you will perform analysis to see if continued pre-training was effective.
You should think of part 1 as a warmup to get you familiar with the code, but you should focus most of

your effort on part 2 and treat it like a final project.
In this project, you will use CodaLab Worksheets, a platform for running reproducible experiments, which

will importantly give you access to GPUs (Google Cloud in our case, but the nice thing is that the CodaLab
user can be agnostic to the underlying compute). Please follow the instructions in this setup guide
carefully:

https://docs.google.com/document/d/1rWgWyYJc36Vow2eU8oZ0pfVU7SzFRg3Eb1dB1XHZzvE/edit?usp=
sharing

1 Part 1: length controllability
In this part, you will try to instill GPT-2 [1] with length controllability, the ability to specify how many words
a generated sentence should have. Other forms of controllable generation have been explored in previous
works [2, 3].

Continued pre-training and dataset. We instill length controllability into GPT-2, we use continued
pre-training [4, 5], where we start with the already-trained GPT-2 model and continue training on a dataset
that demonstrates the desired property.

We first create a custom dataset, OpenWebText-WordLength, as follows. Define the following
transformation, which takes a sentence and annotates it with the number of words:

[sentence] ⇒ <len> [# words] <text> [sentence] (1)

where <len> and <text> are special tokens, and [# words] is the number of words in [sentence].1 For
example:

Original: Alice went to the market. (2)
New: <len> 6 <text> Alice went to the market. (3)

To construct OpenWebText-WordLength, we randomly sample a 1/6 of the sentences from OpenWeb-
Text and apply the above transformation.2

You will be given a trained GPT-2 and asked to perform continued pre-training on OpenWebText-
WordLength to produce a model which we will call GPT-2-len.

1Words are defined by the NLTK word tokenizer — punctuation counts as words.
2Recall that GPT-2 was trained on WebText, which is a similar but closed version of OpenWebText.

1

https://docs.google.com/document/d/1rWgWyYJc36Vow2eU8oZ0pfVU7SzFRg3Eb1dB1XHZzvE/edit?usp=sharing
https://docs.google.com/document/d/1rWgWyYJc36Vow2eU8oZ0pfVU7SzFRg3Eb1dB1XHZzvE/edit?usp=sharing

Using GPT-2-len for length controllability. To generate a sentence with a certain number of words,
we can now prompt GPT-2-len with the given number of words. For example, if we want 6 words, then we
use the prompt:

<len> 6 <text> (4)

The model will produce a completion conditioned on this prompt, which hopefully respects the provided
length directive. Note that there is no guarantee that the resulting text will have 6 words—how close you get
will be something you will explore!

Note: The HuggingFace generation code produces completions that includes the prompt. You’ll need to
be careful to remove the prompt and remove any text after further <len> tags that the model outputs after
finishing the current sentence.

Metric for length controllability. To evaluate how well the model has mastered length controllability,
we define an error metric. We first generate a target vector y ∈ Nn of n integer lengths. We use the model to
generate sentences according to each target length, and we let the predicted lengths of each sentence to be
ŷ ∈ Nn. The word length for each word should be calculated by using NLTK’s word_tokenize function to
split a sentence into words. Then define the metric to be the mean absolute error of the generated lengths
versus the desired lengths:

Err(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|. (5)

Deliverables. The staff has set up a pre-processed version of the OpenWebText-WordLength dataset
and the code for training a 12 layer GPT-2 model (gpt2 in the HuggingFace model hub, roughly half the
size of gpt2-medium). The code is built on HuggingFace Transformers. CodaLab command templates are in
scripts; you’ll need to run scripts/cl-train.sh and scripts/cl-evaluate.sh.

1. Methodology: Select training hyperparameters (such as the learning rate and batch size) so that the
model learns the length controllability property within 50000 training steps. This may take about 24
hours (the staff is working to improve this time). You can run for a shorter number of steps, but as
a ballpark, your final average evaluation error metric should be less than 1.5. We found this to be
achievable within 10000 steps. Longer training should decrease this error further. In your writeup,
describe your process for deciding on the best hyperparameters (e.g., which hyperparameters you tried
and how you decided on best hyperparameters). Report the training and validation perplexity of your
language model.

2. To show how well the model learns length controllability throughout training, load the model checkpoints
saved throughout training and compute the error metric for each saved checkpoint. We provide 5
sets of test prompts for you to use for this evaluation in wordlength_eval_data/ — record the mean
and standard deviation of the metric over the 5 sets. We also provide some code for evaluation
(src/evaluate_wordlength_model.py), which outputs results over the 5 evaluation sets in a file called
results.json.

3. Experimental results: Make a plot (with the mean and standard deviations shown in the plot) where
the x-axis is training steps (include 0 training steps in the plot) and the y-axis is the error metric for
length controllability. Discuss conclusions from this plot in the writeup.

4. Error analysis: Perform an error analysis on the generated sentences. Include 5-10 example generated
sentences. For what sentence lengths does length controllability work or not work?

5. Supporting materials: Submit code for all the experiments in this section, as well a link to your CodaLab
worksheet. Make sure to annotate your CodaLab worksheet with textual descriptions (it should not be
just a list of bundles).

2

2 Part 2: Focal property
We will follow part 1, except with your focal property rather than length controllability. You will create a
new custom dataset (analogous to OpenWebText-WordLength for length controllability) and perform
continued pre-training on that. By default, we only expect that a change to the dataset is necessary. However,
you should feel free to also change the way that the model is trained, or even what model you start with;
treat this like a final project so feel free to customize and make this part your own! If you do decide to do
something very far from the general flow of Part 1, please make a post on Ed to the staff for approval.

We provide a raw version of OpenWebText and our code for processing it into OpenWebText-
WordLength in case it is helpful.

Deliverables.

1. Overview: Provide an overview of the focal property of interest, and define the evaluation metrics for
the focal property as done in Project 1.

2. Dataset: Describe the custom dataset that you used for continued pre-training, including (i) high-level
motivation (why did you choose this one), (ii) basic statistics of the dataset, (iii) concrete examples
from the dataset, and (iv) a thorough description of how this dataset was created.

3. Experimental details: how did you train the model and how you chose hyperparameters (similar to part
1)?

4. Results: After training the model, how did your model compare to the vanilla GPT-2 model on your
evaluation metrics? Discuss any conclusions from the results, and provide example generated text for
qualitative analysis.

5. Supporting materials: Submit the code for all your experiments in this section, as well as a link to
your CodaLab worksheet. Make sure to annotate your CodaLab worksheet with textual descriptions (it
should not be just a list of bundles).

6. At the end of the write-up, please include an authorship statement detailing the contributions of the
members of the group.

3 Tips for training and development
1. During development, you should run on small datasets to keep the iteration cycle time low. You should

track metrics such as the train loss and the validation loss, and make sure that 1) the train loss is going
down, and 2) that the validation loosely tracks the train loss. Inspecting some generations from trained
models can also be helpful to see if you’re going in the right direction.

2. Take a look at GPT-2’s default hyperparameters to know how the initialized weights were obtained.
This information is available on HuggingFace: https://huggingface.co/docs/transformers/model_
doc/gpt2

3. A general strategy for increasing the batch size is via data parallelism, which parallelizes across GPUs
by having one copy of the model on each GPU and allowing each GPU to see a different minibatch of
data. The gradient updates across GPUs are combined before they are applied to the model copies. In
HuggingFace, we can specify the per-device batch size and freely scale up the number of GPUs. The
tradeoff here is that increasing the number of GPUs will deplete your compute quota more quickly.

4. Another strategy for increasing the batch size, but trades off for sequential computation time, is gradient
accumulation. In gradient accumulation, we run multiple minibatches one-by-one through the model
and compute the average of the gradients across the minibatches. The effective batch size is then
multiplied by the number of accumulation steps, but now every step of training will be slower by a
factor of the number of accumulation steps. Gradient accumulation can also be combined with data
parallelism.

3

https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2

References
[1] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language

models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

[2] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. CTRL: A
conditional transformer language model for controllable generation. CoRR, abs/1909.05858, 2019.

[3] Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, and Luke
Zettlemoyer. HTLM: hyper-text pre-training and prompting of language models. CoRR, abs/2107.06955,
2021.

[4] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and
Noah A Smith. Don’t stop pretraining: adapt language models to domains and tasks. arXiv preprint
arXiv:2004.10964, 2020.

[5] Colorado J. Reed, Xiangyu Yue, Ani Nrusimha, Sayna Ebrahimi, Vivek Vijaykumar, Richard Mao, Bo Li,
Shanghang Zhang, Devin Guillory, Sean Metzger, Kurt Keutzer, and Trevor Darrell. Self-supervised
pretraining improves self-supervised pretraining. arXiv, 2021.

4

	Part 1: length controllability
	Part 2: Focal property
	Tips for training and development

